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Abstract
We consider the linearized nonsymmetric theory of gravitation (NGT) within
the background of an expanding universe and near a Schwarzschild mass.
We show that the theory always develops instabilities unless the linearized
nonsymmetric Lagrangian reduces to a particular simple form. This form
contains a gauge-invariant kinetic term, a mass term for the anti-symmetric
metric field and a coupling with the Ricci curvature scalar. This form cannot
be obtained within NGT. Based on the linearized Lagrangian we know to be
stable, we consider the generation and evolution of quantum fluctuations of the
anti-symmetric gravitational field (B-field) from inflation up to the present day.
We find that a B-field with a mass m ∝ 0.03(HI /1013 GeV)4 eV is an excellent
dark matter candidate.

PACS numbers: 04.20.−q, 04.90.+e, 98.80.−k

1. Introduction

While Einstein’s general relativity (GR) has stood all direct experimental tests [13], there are
also reasons to try to extend GR. For example, the mysterious nature of dark energy and dark
matter might become resolved within a modified theory of gravity.

Another reason to try to extend GR is the notion of generality. Within the framework
of GR torsion is not included in a natural, geometric way. Indeed, any calculation of the
connection (either by requiring metric compatibility or by using the first-order formalism)
leads to the (symmetric) Levi-Cività connection. One is then free to add torsion, but torsion
does not follow naturally from the theory. An interesting generalization of GR would generate
torsion in a purely geometric way, analogous to the way the Levi-Cività connection is generated
in GR.

The nonsymmetric gravitational theory (NGT) [7] is an extension of GR that drops the
standard axiom of GR that the metric is a symmetric tensor. Thus, we decompose the general,
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nonsymmetric metric gµν in its symmetric and anti-symmetric parts,

gµν = Gµν + Bµν, (1)

where Gµν = g(µν), Bµν = g[µν] and (·) and [·] indicate normalized symmetrization and
anti-symmetrization, respectively. Indeed, there is no physical principle that tells us that the
metric should be symmetric and therefore such a generalization is very interesting to study.

Indeed, the extra structure of NGT produces interesting results on the issues of dark
energy and dark matter [8–10] and it will also be clear that such a theory produces torsion
in a very natural way. Unfortunately, the nonsymmetric theory of gravitation suffers from all
kinds of problems. The first main problem is the non-uniqueness of the theory, as described
in [5]. Since torsion is available and since the linearization procedure is not unambiguous, the
final linearized Lagrangian is (degenerately) determined by 11 free parameters. The second
problem, as described in [4], is the possibility of propagating ghost modes. Fortunately,
this problem can be relatively easily solved by the introduction of a mass term for the
B-field [3, 7].

In this paper, we consider NGT linearized around a GR configuration. By explicitly
constructing two different backgrounds (FLRW universe and Schwarzschild), we show that
the evolution of the B-field is unstable. By considering the most general form of the linearized
Lagrangian, we can explicitly point out which terms cause these instabilities. In [5], it is
shown that both these terms cannot be removed and that these terms are not a relic of the
linearization. Based on this analysis, we are able to write a consistent, stable linearized
Lagrangian for the B-field. We next canonically quantize the B-field in inflation and follow its
dynamics in radiation and matter era. This analysis shows that the B-field is an excellent dark
matter candidate, provided the mass is of the order of the neutrino masses.

2. The linearized Lagrangian

Since GR is very successful, it is natural to assume that any modification of the theory should
be relatively small. Therefore, we consider NGT in the limit of a small B, but an arbitrary G.
The linearization of the full, general Lagrangian is done in appendix A of [5]. The result is

L = √−G
[
R + 2� − 1

12H 2 +
(

1
4m2 + βR

)
B2

−αRµνB
µαBα

ν − γRµανβBµνBαβ
]

+ O(B3). (2)

Here, the curvature terms Rµανβ, Rµν and R all refer to the GR background. Hµνρ is
the field strength associated with Bµν . The coefficients α, β and γ are determined by the
parameters of the ‘full’ Lagrangian and the unambiguous decomposition of the metric in its
symmetric and anti-symmetric parts. It is important to note that one cannot consistently
choose the parameters of the full theory in such a way that γ = 0 (see appendix A of [5]).
The parameters α and β can in principle be set to zero; however a priori there is no reason to
do this. A mass is naturally generated in the presence of a nonzero cosmological constant and
in fact one has

1
4m2 = �

(
1
2 − ρ + 4σ

) ∝ 10−84 GeV2, (3)

where we assume that the parameters ρ and σ are of order unity. ρ and σ depend on the same
parameters as α, β and γ in (2) (see appendix A of [5]). Note that the inequality in (3) is
not necessarily true at all times, since the cosmological term may change during the evolution
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Table 1. The scale factor and conformal time in different eras.

Era a η

de Sitter inflation a = − 1
HI η

η � − 1
HI

Radiation a = HI η
1

HI
� η � ηeq

Matter a = HI

4η2
eq

(η + ηeq)
2 η � ηeq

of the universe (for example during phase transitions). The field equations derived from the
Lagrangian (2) are

(
√−G)−1 1

2∂ρ(
√−GHρµν) +

(
1
2m2 + 2βR

)
Bµν

−α
(
BναRµ

α + BαµRν
α

) − 2γBαβRµ
α

ν
β + O(B2) = 0 (4)

Rµν − 1
2RGµν − �Gµν + O(B2) = 0. (5)

We see that to this order the field equations decouple and it makes sense to consider the
symmetric background to be just a GR background. The theory then reduces to an anti-
symmetric tensor field coupled to GR.

3. Instabilities in NGT

We first focus on the dynamics of the B-field in an expanding universe1 [11]. Our background
metric is given by the (conformal) Friedmann–Lemaitre–Robertson–Walker metric (FLRW):

Gµν = a(η)2ηµν, (6)

where ηµν = diag(1,−1,−1,−1), η is the conformal time and a(η) is the conformal scale
factor. The conformal time is related to the standard cosmological time by a dη = dt . The
scale factor during the different cosmological eras is given in table 1, where HI ∼ 1013 GeV
is the Hubble parameter during inflation and ηeq is the conformal time at matter–radiation
equality.

For the following discussion, we focus on the ‘electric’ mode of the B-field: Ei ≡ B0i .
(the ‘magnetic’ mode turns out not to be very interesting for our present purpose). If we
evaluate the Lagrangian (2) and the field equations (4) in the FLRW background, we find the
following equation of motion:[

∂0∂0 − Y
X

δij ∂i∂j + M2
eff

]
Ẽ = 0, (7)

where

E =
√
Y
X

Ẽ, (8)

and the effective mass term is given by

M2
eff = −2Ya2 +

Y ′′

2Y
− 3(Y ′)2

4Y2
. (9)

1 This section is based on [5].



7070 T Janssen and T Prokopec

Furthermore, we have defined

X = a−2((12β + 2α)H2 + (12β + 4α − 2γ )H′ − 1
2m2a2) (10)

Y = a−2
(
(12β + 4α − 2γ )H2 + (12β + 2α)H′ − 1

2m2a2
)

(11)

and

H = a′

a
, (12)

where a prime indicates a derivative with respect to conformal time. We see from (7) that Ẽ

behaves just as a massive vector field, as long as Y/X > 0. On the other hand, if Y/X < 0
we see that the spatial derivatives appear with the ‘wrong’ sign. Since in Fourier space these
derivatives generate a term proportional to minus the momentum squared, we see that a wrong
sign will lead to an exponential growth of the field. Large momenta are no longer suppressed
and thus the field will grow without bounds. One could worry about the cases when M2

eff < 0.
However on dimensional grounds, the effective mass squared scales in the worst case as 1/η2.
Such a scaling results in a standard power-law enhancement on super-Hubble scales [11] and
presents no problem.

3.1. Instabilities during radiation era

In de Sitter inflation Y/X = 1, and thus the field dynamics are completely regular. However,
during radiation era we obtain[

∂0∂0 − H 2
I m2η4 + 4(γ − α)

H 2
I m2η4 − 4(γ − α)

δij ∂i∂j + M2
r

]
Ẽr = 0. (13)

Here, Mr is the effective mass during radiation, whose precise form is not important for us.
We see, however, that we might have problems with the sign of the coefficient in front of the
spatial derivatives. For example, if we look at the beginning of radiation era (η = 1/HI ) we
see that if we want Y/X to be positive, we need that m2

/
H 2

I is at least O(α − γ ). In other
words, we approximately need

m � |α − γ |HI ∼ |α − γ | × 1013 GeV, (14)

which, unless |α − γ | is very small, contradicts equation (3). Therefore, if we require Y/X to
be positive, we could drop the purely geometric origin of the Lagrangian and add by hand a
large (1013 GeV) mass for the B-field, we could fine tune α or γ such that α −γ is sufficiently
small to satisfy the bound (14) or we could use the more natural requirement that α = γ . On
theoretical grounds only the last of these solutions is satisfactory. A big problem with the first
solution is that, while we can always find a mass where the evolution of the mode is stable, we
can then also think of more extreme situations where the mode once again becomes unstable.
Therefore, we conclude that a natural theory should have α = γ .

We have also investigated matter era and power-law inflation and we find that similar
instabilities are present. However also in these cases α = γ stabilizes the system.

3.2. Instabilities around a Schwarzschild mass

We have done a similar analysis in a Schwarzschild background. While the background
possesses spherical symmetry, there is no reason to impose this symmetry on the B-field. We
will not give any details here (these are given in section 4 of [5]), but will only mention that
similar instabilities as in the previous section are present. The unstable modes are precisely
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the modes that are not spherically symmetric (these modes are not taken into account in [1],
where it was claimed that the B-field in a Schwarzschild background is stable). In this case,
the requirements for a stable system are either

γ = 0 (15)

or

m2 >
4γGNh̄2

c4

M0

r3
0

(kg2), (16)

where we explicitly plugged back factors of c, h and GN . M0 is the mass of the object we are
considering and r0 is the distance where we require stability. For γ order 1 this requires, e.g.,
for the exterior of a neutron star (M0 ∝ Msun and r0 ∝ 20 km):

m �
√

|γ | × 10−19 GeV. (17)

However, on theoretical grounds, it is more appealing to require that the B-field is stable
for all values of M0 and r0. This can only be achieved if we choose γ = 0. However, as noted
in section 2, this choice is not possible within our linearization of NGT.

4. Anti-symmetric metric field as dark matter

Based on the previous section, we know that the only consistent linearized Lagrangian for the
B-field is

L = √−G
[
R + 2� − 1

12H 2 +
(

1
4m2 + βR

)
B2

]
. (18)

While this Lagrangian is not obtainable in NGT, we like to stress that our linearization
procedure of NGT lacks any guiding principle (which is reflected in the non-uniqueness of
the theory). The analysis of the previous section shows that if we want to make sense of
nonsymmetric gravity we need to find a guiding principle that, upon linearization, leads to
(18). The most natural way in which this could happen is that by some symmetry in the new
theory the dangerous terms in (2) are forbidden. If this is the case, this symmetry would also
forbid these terms to be generated by quantum corrections, that otherwise might destabilize
the theory. For now we do not know this principle, but we can still study (18). In this section2,
we consider the generation and evolution throughout the cosmological history of quantum
fluctuations of the B-field. In particular, we only consider the longitudinal degrees of freedom
of the ‘magnetic’ component [10–12],

Bij ≡ −εijkBk, (19)

since this mode gives the dominant contribution to the energy density in the limit m → 0.
For simplicity we take β = 0, but keep the mass arbitrary. Indeed, since we lack a guiding
principle, (3) does not have to be true. Therefore, we allow the presence of a ‘bare’ mass for
the B-field. In order to quantize the field, we perform a Fourier transformation

BL(x) =
∫

d3k

(2π)3/2

[
ei�k·�xBL(η, �k)b�k + e−i�k·�xBL(η, �k)b

†
�k
]
, (20)

where η is once again conformal time as given in table 1, with canonical commutation relations[
b�k, b

†
�k′
] = (2π)3δ3(�k − �k′). (21)

During de Sitter inflation we find that the mode functions approach the conformal vacuum

BL
inf ∝ 1√

2k
e−ikη + O

(
m2

H 2
I

)
. (22)

2 Based on [12].
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Figure 1. Snapshot of the power spectrum for mHI η
2
eq = 10−2.

During radiation era the field equations are solved by

BL
rad = 1√

2k

[
α�k

(
1 − i

kη

)
e−ikη + β�k

(
1 +

i

kη

)
eikη

]
+ O

(
m2

H 2
I

)
(23)

with the Wronskian condition that

|α�k|2 − |β�k|2 = 1 (24)

and we choose α and β such that the solutions match at the inflation–radiation transition.
Unfortunately, we cannot analytically solve the equations of motion in matter era, so there
we need to use numerical analysis. We are interested in the power spectrum, which is given
by [10]

PB(�k, η) = H 4
I

4π2a4

[∣∣∣∣∂ηB
L
�k (η) +

a′

a
BL

�k (η)

∣∣∣∣
2

+ (k2 + a2m2)
∣∣BL

�k
∣∣2

]
. (25)

A snapshot of this power spectrum, during matter era, for different redshifts is given in
figure 1. We find that at late times the power spectrum becomes dominated by a characteristic
peak. This peak is caused by modes that are superhorizon (kη � 1) at equality (z = 3230),
but start to scale as nonrelativistic matter (∝a−3) in matter era and enter the horizon. Modes
on small enough scales (kη > a/aeq) are effectively massless and scale as relativistic matter
∝a−4. The position of the peak is determined by the mass of the B-field. In fact, we have

kpeak =
√

HIm. (26)

Now that we know the power spectrum, we can calculate the energy density of the B-field,
defined by

ρB =
∫

dk

k
PB. (27)

A good dark matter candidate should have an energy density
ρB

ρrad
= 1 at η = ηeq, (28)

where ρrad is the energy density of the cosmic radiation. The calculation is done in [12] and it
is found that

m = 2.8 × 10−2

(
1013 GeV

HI

)4

eV (29)



Problems and hopes in nonsymmetric gravity 7073

gives the right energy density. Since we lack a guiding principle, there is at present no natural
explanation for such a mass. Its origin might be geometrical, it might be generated by a
Yukawa-type term or it could just be a ‘bare’ mass term.

5. Discussion and conclusion

We have shown that, while the nonsymmetric theory of gravitation is an extremely interesting
extension of general relativity to study, the modes of the anti-symmetric metric field are
unstable. This instability manifests itself through a wrong sign in front of spatial derivatives
in the equations of motion. Such a wrong sign means that large momenta are no longer
suppressed, and therefore the field grows without bounds. We showed that the troublesome
terms in the Lagrangian (2) are the coupling to the Riemann tensor and the Ricci tensor.
Furthermore in [5] it was shown that the first of these terms cannot be removed in NGT and
that the instabilities are not a relic of the linearization. However, our linearization procedure
was rather naive and it lacks a good guiding principle. Our analysis shows that if one could
find a good principle from which to construct a nonsymmetric theory of gravitation (e.g. by
considering complex manifolds as in [2, 6]), the linearized Lagrangian must have the form
of (18). Based on this knowledge, we have studied the evolution of quantum fluctuations,
generated at inflation, throughout the cosmological history. We find that the B-field has the
right energy density to fully take account for the dark matter energy density if the mass of the
field is given by m = 2.8 × 10−2

(
1013 GeV

HI

)4
eV. Furthermore, the power spectrum develops

a characteristic peak, that for this mass and z = 10 (start of structure formation) has a length
scale coincidentally corresponding to the earth–sun distance. Although the mass of the B-field
is small (equivalent to the mass of the τ -neutrino), it is still cold dark matter. Indeed, since
the field does not couple to matter fields, it cannot thermalize and therefore the spectrum stays
primordial and highly non-thermal. Because of this, it does not suffer from the problems that
neutrino dark matter has. If the B-field indeed is the physical dark matter, gravity may get
modified at scales m−1 ∝ 0.1 µm

(
HI

1013 GeV

)4
. This is still about two orders of magnitude below

the current experimental bound [13].
As a final remark, we would like to stress that nonsymmetric gravity is a very interesting

and natural extension of general relativity, with promising results on the issue of dark matter.
However, for the theory to be viable, it is imperative to find a guiding principle that naturally
leads to the stable Lagrangian (18).
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